Propuesta de examen de admisión

Resuelve los siguientes ejercicios. Escribe de manera clara y justifica tus argumentos.

- 1. Dados los vectores $v_1 = (1, 2, 3)$ y $v_2 = (2, 3, 0)$:
- (a) Demuestra que son linealmente independientes.
- (b) ¿Cuál es la ecuación del espacio V que generan en \mathbb{R}^3 ?
- (c) ¿Qué dimensión tiene V?
- (d) ¿Qué matrices de tamaño $m \times 3$ tienen a V como su espacio nulo?
- (e) ¿Qué vector v_3 podría completarlos para ser una base en \mathbb{R}^3 ?
- 2. Sean V y W espacios vectoriales y $T:V\longrightarrow W$ una transformación lineal. Demuestra que si T es biyectiva, entonces T^{-1} también es una transformación lineal.
- 3. Demuestra que $\sqrt{2}$ es un número irracional.
- 4. Describe el conjunto de ternas $(a,b,c) \in \mathbb{R}^3$ tales que el conjunto $V(a,b,c) = \{(x,y) \in \mathbb{R}^2 \mid ax+by=c\}$ es un subespacio vectorial de \mathbb{R}^2 . Hallar todas las posibles dimensiones que puede tener V.
- 5. Sea V un espacio vectorial sobre \mathbb{R} y $\{v_1, v_2, v_3\}$ una base de V.
 - (a) Demuestra que si $r_1, r_2, r_3 \in \mathbb{R}$ y todos son distintos de 0, entonces $\{r_1v_1, r_2v_2, r_3v_3\}$ es una base de V. ¿Qué pasa si al menos uno de ellos es 0?
 - (b) Sea $x_i = v_1 + v_i$ para $i \in \{1, 2, 3\}$. ¿Es $\{x_1, x_2, x_3\}$ una base de V?
- 6. ¿Existe un plano que contiene a las rectas l_1 y l_2 en \mathbb{R}^3 dadas por sus ecuaciones paramétricas?

$$l_1: x = 3 + 2t, y = 2 - t, z = -1 - 3t, t \in \mathbb{R};$$

$$l_2: x = -4 + 3t, y = -t, z = 5 + t, t \in \mathbb{R}.$$

En caso de que existiera tal plano, contestar si las rectas son paralelas en ese plano. Justifica su respuesta.

- 7. Sea $f: \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R}$ dada por $f(x) = \frac{1}{x-2}$.
 - (a) ¿f tiene mínimos o máximos locales?
 - (b) Encuentra en qué parte de su dominio f es creciente y en que parte es decreciente.

- 8. Encuentra los mínimos o máximos locales de la función $f:\mathbb{R} \longrightarrow \mathbb{R}$ dada por $f(x)=(x-2)^{\frac{2}{3}}$.
- 9. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ dada por: $f(x) = \frac{|x|}{x}$ si $x \neq 0$ y f(x) = 0 si x = 0.
 - (a) ¿En qué puntos f es continua?
 - (b) ¿En qué puntos f es derivable?
 - (c) Encuentra la derivada de f en los puntos en los que f es derivable.
- 10. Sea $f(x) := \sin^3 x + \cos^3 x$. Encuentra

$$\int_{0}^{\pi/3} f'(x)dx.$$